ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics 6360

MFP1 Further Pure 1

Mark Scheme
 2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to mark scheme and abbreviations used in marking

M	mark is for method	
m or dM	mark is dependent on one or more M marks and is for method	
A	mark is dependent on M or m marks and is for accuracy	
B	mark is independent of M or m marks and is for method and accuracy	
E	mark is for explanation	
Vor ft or F	follow through from previous	
	incorrect result	MC

Application of Mark Scheme

No method shown:

Correct answer without working
Incorrect answer without working
More than one method / choice of solution:
2 or more complete attempts, neither/none crossed out
1 complete and 1 partial attempt, neither crossed out

Crossed out work

Alternative solution using a correct or partially correct method
mark as in scheme
zero marks unless specified otherwise
mark both/all fully and award the mean mark rounded down
award credit for the complete solution only
do not mark unless it has not been replaced
award method and accuracy marks as appropriate

MFP1

MFP1 (cont)

Q	Solution	Mark	Total	Comments
$5(a)$ (b)	Use of $\tan \frac{\pi}{3}=\sqrt{3}$ GS is $\frac{1}{3}\left(\frac{\pi}{3}+n \pi\right)$ One solution is 0 GS is $\frac{1}{3} n \pi$	$\begin{gathered} \text { M1 } \\ \text { m1A1 } \\ \text { M1A1 } \\ \text { m1A1F } \end{gathered}$	3 4	Degrees used - 1-mark penalty m1A0 for $\frac{\pi}{9}+n \pi$ or for correct answer plus extra solutions OE m1A0 for $n \pi$ or for correct answer plus extra solns; ft wrong first solution
	Total		7	
6(a)(i) (ii) (iii) (b)(i) (ii) (c)	$\begin{aligned} & \alpha+\beta=4, \alpha \beta=13 \\ & \alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta \\ & \ldots=4^{2}-26=-10 \end{aligned}$ The square of a real number is positive (or zero) The sum of two such squares is positive (or zero) $\begin{aligned} & (\alpha+\mathrm{i})+(\beta+\mathrm{i})=4+2 \mathrm{i} \\ & (\alpha+\mathrm{i})(\beta+\mathrm{i})=12+4 \mathrm{i} \end{aligned}$ Correct coeff of x or constant term $x^{2}-(4+2 \mathrm{i}) x+(12+4 \mathrm{i})=0$	$\begin{gathered} \text { B1B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { E1 } \\ \text { E1 } \\ \text { B1F } \\ \text { M1A1F } \\ \text { M1 } \\ \text { A1F } \\ \hline \end{gathered}$	2	convincingly shown (AG) ft wrong value in (a)(i) ditto Using c's answers in (b) ft wrong answers in (b)
	Total		11	
$\begin{array}{r} 7(\mathbf{a})(\mathbf{i}) \\ \text { (ii) } \\ \text { (b)(i) } \\ \text { (ii) } \end{array}$	$\begin{array}{\|l\|} \hline D(4,0) \\ E(8,-4), F(10,-2) \end{array}$ Correct sketch Scale factor is $2 \sqrt{2}$ Angle 45°	M1A1 A1A1 m1A1F M1A1 M1A1	$\begin{aligned} & 4 \\ & 2 \end{aligned}$	M1 if at least one point correct Ft one error NMS 2/2; 1/2 for AWRT 2.8 NMS $2 / 2$; condone $315^{\circ} ; 1 / 2$ for AWRT $44-46^{\circ} \mathrm{OE}$
	Total		10	
$\begin{array}{r} 8(\mathbf{a}) \\ \text { (b) } \end{array}$	P is $(2,0)$ $P Q$ is $y=2(x-2)$ Elimination of y (or of x) $(x-2)(5 x-22)=0$ Q is $(4.4,4.8)$	$\begin{gathered} \text { B1 } \\ \text { M1A1F } \\ \text { m1A1F } \\ \text { A1 } \\ \text { A1A1 } \end{gathered}$	1	ft wrong value for x_{P} ft numerical error
	Total		8	
9(a)(i) (ii) (b) (c)	Asymptote is $y=1$ Denominator never zero $\mathrm{f}(x)=k \Rightarrow(1-k) x^{2}+4 x-9 k=0$ Equal roots if $16+36 k(1-k)=0$ ie if $9 k^{2}-9 k-4=0$ Solving quadratic for k $\begin{aligned} & k=-\frac{1}{3} \text { or } k=\frac{4}{3} \\ & 4 x^{2}+12 x+9=0 \text { or } x^{2}-12 x+36=0 \end{aligned}$ SPs when $x=-\frac{3}{2} \ldots$; and when $x=$ 6...... SPs are $\left(-\frac{3}{2},-\frac{1}{3}\right)$ and $\left(6, \frac{4}{3}\right)$	$\begin{gathered} \hline \text { B1 } \\ \text { E2,1 } \\ \text { M1A1 } \\ \text { m1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { m1 } \\ \text { A1 } \\ \text { A1 } \\ \\ \text { A1 } \\ \hline \end{gathered}$	$\begin{aligned} & \hline 1 \\ & 2 \end{aligned}$ 4 6	E1 if incomplete convincingly shown (AG) NMS 2/2
	Total		13	
	Total		75	

